sytytyksen säätö

Overdrive.fi on harrasteautoiluun keskittyvä verkkosivusto, joka tarjoaa sisältöä harrastajien ja rakentajien tarpeisiin. Epäasiallinen ja loukkaava sisältö, joka rikkoo sivuston käyttöehtoja, poistetaan. Näin eivät myöskään poliittinen keskustelu ja aiheet sinne kuulu. Harrastus on yhteinen poliittisesta kannasta riippumatta. Overdriven yleiset käyttöehdot löytyvät täältä, ja on hyvä muistaa, että jokainen keskustelija on rikos- ja vahingonkorvausoikeudellisessa vastuussa omien viestiensä sisällöstä.

Ketju osiossa 'Moottori', aloittaja p0ks, 6.7.2017.

  1. jänis2

    jänis2 3rd gear

    Oma auto 289 ford -68 esim risteyksestä lähtiessä meinaa nyykähtää jos painaa kevyesti kaasua, mutta jos polkasee kovempaa niin lähtee hyvin.

    Googletin että sytkä vois vaikuttaa tuohon. Mihin suuntaan sytkää pitäisi koittaa säätää.

    Itellä ei ole ajoituslamppua, mutta jos joku osaa neuvoa kumpaan suuntaan käännän virranjakajaa ja käännänkö kokeeksi millin vai viisi.


    EDIT:
    Tutkin kaasaria tarkemmin kun tuossa myöhemmin joku niin ehdotti. Kiihdytyspumpun vivussa oli pieni välys mitä en ollut huomannut, säädin sen ja nyt vaikuttaa toimivan. Kai se sytkä siis on kohillaan.

    Lisää edittiä: Huomasin myös että sytkän alipaine oli kytketty kaasarin sytkälle tarkoitettuun pilliin joka osoittautui ported vacuumiksi. Kytkin toiseen ja toimii vielä paremmin.
     
    Muokattu: 7.7.2018
  2. xarper

    xarper Gearhead

    Myöhesemmälle(?), eli liikaa ennakoita tyhjäkäynnillä?
     
  3. Karpov

    Karpov Double Gearhead

    Kannattaa myös varmistua että kaasari säädöissään.
     
  4. artsiracing

    artsiracing Gearhead

    Jos välttämättä haluat sitä korvakuulolta säätää ja kokeilla, niin aikasemmalleen sitä vois kokeilla.
    Fordissa jakaja pyörii vastapäivään, joten käännä jakajaa myötäpäivään niin saat aikasemmalle.
    Käännät vähän kerrallaan ja käyt kokeilemassa välillä, sit kun alkaa kilistelemään vedättäessä niin on jo liikaa!

    Suosittelen myös vähän tarkempia säätötarkistuksia niin sytkälle kuin kaasarillekin.
     
    Herje tykkää tästä.
  5. Morbidelli

    Morbidelli 3rd gear

    Heitän veikkauksen, ettei ole sytkän ajoituksesta johtuva vika. Kuten Artsi mainitsi, kannattaa tarkistella laajemmin konehuone.
     
  6. jänis2

    jänis2 3rd gear

    Kertokaa ihmeessä mitä sieltä pitäisi tutkia.

    Kaasari on uus holley 600.
     
  7. artsiracing

    artsiracing Gearhead

    Oireen ollessa tuollanen kannattaa ensin kattoo että kiihdytyspumppu ruikkaa heti kun painat vähänkin kaasua.
    Säädä tarvittaessa kiihdytyspumpun ja sen käyttövivun välisen jousikuormitteisen pultti/mutteri systeemin pituutta siten ettei siinä ole välystä.

    Säätöohjeita ja -mahdollisuuksia on muitakin ja tarkempia, mutta aloitetaan näistä karkeimmista.
     
  8. Morbidelli

    Morbidelli 3rd gear

    Onko tuo vika ollut aina, vai ilmestynyt ykskaks?
    Paketista otettua uutta kaasaria voi joutua hienosäätämään, että saa toimimaan kunnolla. Suuttimia, neuloja ja neulanjousia voi joutua vaihtamaan kunnollisen käynnin löytymiseksi. Ensin kannatta kuitenkin tarkastaa perusjutut esim. sytkälaitteet (käy kaikilla sylintereillä) ja sitten vasta kaasarin säätämistä.
     
  9. tapio

    tapio Gearhead

    Ohessa GM:n insinöörin John Hinckleyn oiva artikkeli aiheesta. Lukekaa ja koittakaa sisäistää sen anti:

    TIMING AND VACUUM ADVANCE 101

    John Hinckley

    The most important concept to understand is that lean mixtures, such as at idle and steady highway cruise, take longer to burn than rich mixtures; idle in particular, as idle mixture is affected by exhaust gas dilution. This requires that lean mixtures have "the fire lit" earlier in the compression cycle (spark timing advanced), allowing more burn time so that peak cylinder pressure is reached just after TDC for peak efficiency and reduced exhaust gas temperature (wasted combustion energy). Rich mixtures, on the other hand, burn faster than lean mixtures, so they need to have "the fire lit" later in the compression cycle (spark timing retarded slightly) so maximum cylinder pressure is still achieved at the same point after TDC as with the lean mixture, for maximum efficiency.

    The centrifugal advance system in a distributor advances spark timing purely as a function of engine rpm (irrespective of engine load or operating conditions), with the amount of advance and the rate at which it comes in determined by the weights and springs on top of the autocam mechanism. The amount of advance added by the distributor, combined with initial static timing, is "total timing" (i.e., the 34-36 degrees at high rpm that most SBC's like). Vacuum advance has absolutely nothing to do with total timing or performance, as when the throttle is opened, manifold vacuum drops essentially to zero, and the vacuum advance drops out entirely; it has no part in the "total timing" equation.

    At idle, the engine needs additional spark advance in order to fire that lean, diluted mixture earlier in order to develop maximum cylinder pressure at the proper point, so the vacuum advance can (connected to manifoldvacuum, not "ported" vacuum - more on that aberration later) is activated by the high manifoldvacuum, and adds about 15 degrees of spark advance, on top of the initial static timing setting (i.e., if your static timing is at 10 degrees, at idle it's actually around 25 degrees with the vacuum advance connected). The same thing occurs at steady-state highway cruise; the mixture is lean, takes longer to burn, the load on the engine is low, the manifoldvacuum is high, so the vacuum advance is again deployed, and if you had a timing light set up so you could see the balancer as you were going down the highway, you'd see about 50 degrees advance (10 degrees initial, 20-25 degrees from the centrifugal advance, and 15 degrees from the vacuum advance) at steady-state cruise (it only takes about 40 horsepower to cruise at 50mph).

    When you accelerate, the mixture is instantly enriched (by the accelerator pump, power valve, etc.), burns faster, doesn't need the additional spark advance, and when the throttleplates open, manifoldvacuum drops, and the vacuum advance can returns to zero, retarding the spark timing back to what is provided by the initial static timing plus the centrifugal advance provided by the distributor at that enginerpm; the vacuum advance doesn't come back into play until you back off the gas and manifoldvacuum increases again as you return to steady-state cruise, when the mixture again becomes lean.

    The key difference is that centrifugal advance (in the distributor autocam via weights and springs) is purely rpm-sensitive; nothing changes it except changes in rpm. Vacuum advance, on the other hand, responds to engine load and rapidly-changing operating conditions, providing the correct degree of spark advance at any point in time based on engine load, to deal with both lean and rich mixture conditions. By today's terms, this was a relatively crude mechanical system, but it did a good job of optimizing engine efficiency, throttle response, fuel economy, and idle cooling, with absolutely ZERO effect on wide-open throttle performance, as vacuum advance is inoperative under wide-open throttle conditions. In modern cars with computerized engine controllers, all those sensors and the controller change both mixture and spark timing 50 to 100 times per second, and we don't even HAVE a distributor any more - it's all electronic.

    Now, to the widely-misunderstood manifold-vs.-ported vacuum aberration. After 30-40 years of controlling vacuum advance with full manifold vacuum, along came emissions requirements, years before catalytic converter technology had been developed, and all manner of crude band-aid systems were developed to try and reduce hydrocarbons and oxides of nitrogen in the exhaust stream. One of these band-aids was "ported spark", which moved the vacuum pickup orifice in the carburetor venturi from below the throttle plate (where it was exposed to full manifold vacuum at idle) to above the throttle plate, where it saw no manifold vacuum at all at idle. This meant the vacuum advance was inoperative at idle (retarding spark timing from its optimum value), and these applications also had VERY low initial static timing (usually 4 degrees or less, and some actually were set at 2 degrees AFTER TDC). This was done in order to increase exhaustgas temperature (due to "lighting the fire late") to improve the effectiveness of the "afterburning" of hydrocarbons by the air injected into the exhaust manifolds by the A.I.R. system; as a result, these engines ran like crap, and an enormous amount of wasted heat energy was transferred through the exhaustport walls into the coolant, causing them to run hot at idle - cylinder pressure fell off, engine temperatures went up, combustion efficiency went down the drain, and fuel economy went down with it.

    If you look at the centrifugal advance calibrations for these "ported spark, late-timed" engines, you'll see that instead of having 20 degrees of advance, they had up to 34 degrees of advance in the distributor, in order to get back to the 34-36 degrees "total timing" at high rpm wide-open throttle to get some of the performance back. The vacuum advance still worked at steady-state highway cruise (lean mixture = low emissions), but it was inoperative at idle, which caused all manner of problems - "ported vacuum" was strictly an early, pre-converter crude emissions strategy, and nothing more.
     
  10. tapio

    tapio Gearhead

    What about the Harry high-school non-vacuum advance polished billet "whizbang" distributors you see in the Summit and Jeg's catalogs? They're JUNK on a street-driven car, but some people keep buying them because they're "race car" parts, so they must be "good for my car" - they're NOT. "Race cars" run at wide-open throttle, rich mixture, full load, and high rpm all the time, so they don't need a system (vacuum advance) to deal with the full range of driving conditions encountered in street operation. Anyone driving a street-driven car without manifold-connected vacuum advance is sacrificing idle cooling, throttle response, engine efficiency, and fuel economy, probably because they don't understand what vacuum advance is, how it works, and what it's for - there are lots of long-time experienced "mechanics" who don't understand the principles and operation of vacuum advance either, so they're not alone.

    Vacuum advance calibrations are different between stock engines and modified engines, especially if you have a lot of cam and have relatively low manifold vacuum at idle. Most stock vacuum advance cans aren’t fully-deployed until they see about 15” Hg. Manifold vacuum, so those cans don’t work very well on a modified engine; with less than 15” Hg. at a rough idle, the stock can will “dither” in and out in response to the rapidly-changing manifold vacuum, constantly varying the amount of vacuum advance, which creates an unstable idle. Modified engines with more cam that generate less than 15” Hg. of vacuum at idle need a vacuum advance can that’s fully-deployed at least 1”, preferably 2” of vacuum less than idle vacuum level so idle advance is solid and stable; the Echlin #VC-1810 advance can (about $10 at NAPA) provides the same amount of advance as the stock can (15 degrees), but is fully-deployed at only 8” of vacuum, so there is no variation in idle timing even with a stout cam.

    For peak engine performance, driveability, idle cooling and efficiency in a street-driven car, you need vacuum advance, connected to full manifold vacuum. Absolutely. Positively. Don't ask Summit or Jeg's about it – they don’t understand it, they're on commission, and they want to sell "race car" parts.

    [​IMG]
     
  11. Jussi289

    Jussi289 Double Gearhead

    Nih.
     
    sdfsd tykkää tästä.
  12. sdfsd

    sdfsd Double Gearhead

    Ported on perseestä.
     
  13. Karpov

    Karpov Double Gearhead

    Sytytystä säätelen ja kuulen sen kun kaikki luistaa
     

Kerro tästä muillekin!